Batch Size Optimization
The Batch Size Myth
Section titled “The Batch Size Myth”Understanding Batch Size Impact
Section titled “Understanding Batch Size Impact”Batch size affects multiple aspects of your training:
Training Speed
Section titled “Training Speed”- Too Small: Underutilizes GPU, slower throughput per epoch
- Too Large: May hit memory limits, forces smaller models or reduces throughput
- Optimal: Balances GPU utilization with memory efficiency
Model Performance
Section titled “Model Performance”- Larger batches can lead to worse generalization (sharp minima)
- Smaller batches provide more frequent weight updates
- Batch size affects effective learning rate
Optimization Checklist
Section titled “Optimization Checklist”1. Monitor GPU Utilization
Section titled “1. Monitor GPU Utilization”# Watch real-time GPU usage
nvidia-smi dmon -s u
# Or use nvtop for detailed metrics
nvtopEnsure your GPU utilization is optimal by monitoring GPU usage and adjusting batch size to fully utilize GPU memory without excessive overhead.
2. Check for Data Loading Bottlenecks
Section titled “2. Check for Data Loading Bottlenecks”Analyze if there are bottlenecks elsewhere in your training pipeline, such as data loading. Efficient data loading is essential to keep the GPU consistently fed with data.
Signs of data bottleneck:
- GPU utilization drops between batches
- CPU usage is high during training
- Slow iteration times despite small batch size
Solutions:
- Increase
num_workersin DataLoader - Use faster storage (SSD vs HDD)
- Preload data to RAM if possible
- Use data prefetching
3. Enable Mixed-Precision Training
Section titled “3. Enable Mixed-Precision Training”Consider using mixed-precision training if you’re not doing so already, as it can result in faster computations and reduced memory usage.
from torch.cuda.amp import autocast, GradScaler
scaler = GradScaler()
for data, target in dataloader:
optimizer.zero_grad()
with autocast():
output = model(data)
loss = criterion(output, target)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()import tensorflow as tf
# Enable mixed precision
policy = tf.keras.mixed_precision.Policy('mixed_float16')
tf.keras.mixed_precision.set_global_policy(policy)
# Build and compile model
model = create_model()
optimizer = tf.keras.optimizers.Adam()
# TensorFlow handles loss scaling automatically
model.compile(
optimizer=optimizer,
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
# Train normally - mixed precision is handled automatically
model.fit(train_dataset, epochs=10)4. Gradient Accumulation
Section titled “4. Gradient Accumulation”If you need larger effective batch sizes but hit memory limits:
accumulation_steps = 4
optimizer.zero_grad()
for i, (data, target) in enumerate(dataloader):
output = model(data)
loss = criterion(output, target)
loss = loss / accumulation_steps # Normalize
loss.backward()
if (i + 1) % accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()import tensorflow as tf
accumulation_steps = 4
optimizer = tf.keras.optimizers.Adam()
# Accumulate gradients
gradient_accumulation = [tf.zeros_like(var) for var in model.trainable_variables]
for i, (data, target) in enumerate(train_dataset):
with tf.GradientTape() as tape:
output = model(data, training=True)
loss = loss_fn(target, output)
loss = loss / accumulation_steps # Normalize
# Accumulate gradients
gradients = tape.gradient(loss, model.trainable_variables)
gradient_accumulation = [acc + grad for acc, grad in zip(gradient_accumulation, gradients)]
if (i + 1) % accumulation_steps == 0:
# Apply accumulated gradients
optimizer.apply_gradients(zip(gradient_accumulation, model.trainable_variables))
# Reset accumulation
gradient_accumulation = [tf.zeros_like(var) for var in model.trainable_variables]Finding Your Optimal Batch Size
Section titled “Finding Your Optimal Batch Size”- Start with a power of 2 (e.g., 16, 32, 64)
- Increase gradually until you hit ~80-90% GPU memory usage
- Monitor training speed (samples/second)
- Test model performance with different batch sizes
- Adjust learning rate proportionally if changing batch size significantly
Real-World Example
Section titled “Real-World Example”A common issue with YOLOv8 and similar models:
Read more on GitHub
Key Takeaways
Section titled “Key Takeaways”- Profile before optimizing - measure actual GPU utilization
- Data loading bottlenecks are often the real problem
- Mixed-precision training can double your effective batch size
- Bigger batches ≠ better models (consider generalization)
- Always test multiple configurations for your specific use case